
Class Number CSC 615.01 Spring 2013

MWF 1:10-2:00, TH 331
(date of last update: 1-12-13)

Class Title Unix Programming

Instructor Professor Marguerite Murphy

Office Hours: MWF 11:30-12:00 (by appt), MWF 2:10-3:00

Office: TH 968

email: mmurphy@sfsu.edu

Office telephone: 415-338-2261

URL: http://dbsystems.sfsu.edu/~mmurphy

Course Description Bulletin Copy: Programming in a UNIX environment. Topics

include regular expressions; utilities such as awk, sed, grep, csh, sh,

ksh; system calls such as signals, sockets, POSIX IPC, and POSIX

threads; kernel internal structures.

This course is a senior elective in the area of Operating Systems

and Distributed Processing.

Spring 2013 Revised Course Description: Introduction to Linux

system programming (at the upper division level).Review basic

operating systems concepts and their realization in the Linux 2.6

kernel. Lectures and programming exercises will introduce

advanced C programming techniques, shells, modules, system calls

and an introduction to the data structures and algorithms used to

implement major subsystems of the Linux 2.6 kernel. Although this

course will be taught in lecture format, questions and (limited)

classroom discussion are encouraged!

Prerequisites CSC 415 with grade of C or better or consent of instructor.

You should be familiar with using the Unix programming

environment (e.g. TheCity machine at SFSU), and have a good

working knowledge of the C programming language as well as the

basics of concurrent programming (processes, threads,

synchronization)

Text (required) 1. Love, Linux Kernel Development, 3rd Edition, Addison-

Wesley, 2010 (available as a SFSU Library eBook, primary

reference)

2. Any standard upper division operating systems textbook (to

review basic concepts).

3. Other supplementary class materials will be posted to the

class web site and/or available over the Internet

Text (optional) Harbison & Steele, "C: A Reference Manual", Fifth Edition,

mailto:mmurphy@sfsu.edu
http://www.sfsu.edu/~bulletin/courses/26095.htm

Prentice Hall, 2002.

Stevens and Rago, "Advanced Programming in the Unix

Environment", Addison-Wesley, 2008.

Kerrisk, The Linux Programming Interface, No Starch Press, 2010

(strongly recommended supplementary reference detailing the

Linux system call interface)

Course Web Site http://dbsystems.sfsu.edu/~csc615 (password required)

Reader There are no published lecture notes for this class.

Lecture notes will be available download from the course web site

during the semester.

Course Objectives and Role

in Program

The objectives of this course include:

 Introduce the student to Unix/Linux kernel programming

techniques

 Teach advanced C systems programming and debugging

techniques in a Unix/Linux environment

 Review basic concepts covered in the core Operating

Systems course prerequisite as they are realized in the

Linux platform

 Discuss correct synchronization techniques for both

application programs and kernel code running on

uniprocessor as well as multiprocessor (SMM) platforms

Students will implement and evaluate several small application

programs utilizing low level Unix system calls, then work through

a series of progressively more difficult kernel programming tasks,

culminating with the design and implementation of correctly

synchronized kernel module code. The knowledge of advanced

programming techniques (including correct synchronization) and

the Linux platform play an important role in developing our

students into skilled professional programmers.

Learning Outcomes At the end of this course students will be able to:

 Write correct and well documented advanced C code using

low level Unix/Linux system calls that is demonstrated to

execute correctly

 Know where to look for platform specific programming

information and be familiar with reading and using man

page information as well as other standard reference

materials

 Clearly and accurately explain design decisions in written

program documentation

 Be familiar with the mechanics of Unix/Linux kernel

programming: installing/ configuring the Linux kernel from

source and building a useful personal programming

environment; modifying the kernel code and

recompiling/testing/debugging the new kernel version;

designing, installing and testing and debugging a new Linux

kernel module and possibly a new system call.

 Be able to design and implement simple, but efficient,

concurrent process and thread based applications.

Lecture Topics 1. Using system calls to observe the Linux kernel

2. Basic Linux kernel installation & configuration

3. Kernel data structures & memory allocation

4. Interrupt Handlers & keeping track of time

5. Kernel Synchronization

6. Module programming & debugging

7. Kernel implementation of filesystems & device I/O

8. Kernel implementation of virtual memory

9. Kernel implementation of scheduling

Assignments There will be approximately 10 substantial C programming

assignments, illustrating and extending the topics covered in

lecture.

In addition, there will be a short in-class quiz after each major topic

has been covered in lecture and a comprehensive final examination

at the end of the semester. The final exam will only be given during

the time printed in the Schedule (Friday, May 24, 10:45-1:15) in

the regularly scheduled classroom.

Grading Programming/Homework Assignments: 40%, Quizzes: 25%, Final

Exam: 35%

