Measurement and Modeling of Disk Subsystem Performance

Wednesday, October 13, 1999 - 17:30
TH 331
Jozo J. Dujmovic, Daniel Tomasevich, Ming Au-Yeung San Francisco State University

This paper presents techniques for measurement and analytic modeling of disk subsystem performance. We measure disk subsystem performance using benchmark programs and develop analytic models of measured systems. The models are calibrated and used as tools for performance prediction. Our goal is to show problems related to practical modeling of real life computer systems and limitations of some traditional modeling techniques. We present models of load-dependent disks, disk cache, and load-dependent Mean Value Analysis models having high predictive power. Our results show that real systems include highly nonlinear behavior caused by disk optimization algorithms and by caching, and cannot be satisfactorily modeled using the traditional load-independent Mean Value Analysis. We performed experiments for a variety of operating systems including Windows NT. The development of load-dependent models, on the other hand, is not simple and requires a substantial calibration effort. We developed a new quantitative indicator for evaluation of predictive power of our analytic models.

The results of this research have been obtained in the Experimental CS Lab developed using the NSF grant ILI DUE-9751724. Without this grant our experimental work would not be possible.


Jozo Dujmovic obtained his doctorate from the University of Belgrade in 1976, and Daniel Tomasevich and Ming Au-Yeung received their M.S. degrees in Computer Science from San Francisco State University in 1999. They worked on this project during Fall 1998 and Spring 1999.